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The optimal distribution of steady suction needed to control the growth of single or
multiple disturbances in quasi-three-dimensional incompressible boundary layers on
a flat plate is investigated. The evolution of disturbances is analysed in the framework
of the parabolized stability equations (PSE). A gradient-based optimization procedure
is used and the gradients are evaluated using the adjoint of the parabolized stability
equations (APSE) and the adjoint of the boundary layer equations (ABLE). The
accuracy of the gradient is increased by introducing a stabilization procedure for the
PSE. Results show that a suction peak appears in the upstream part of the suction
region for optimal control of Tollmien–Schlichting (T–S) waves, steady streamwise
streaks in a two-dimensional boundary layer and oblique waves in a quasi-three-
dimensional boundary layer subject to an adverse pressure gradient. The mean flow
modifications due to suction are shown to have a stabilizing effect similar to that of
a favourable pressure gradient. It is also shown that the optimal suction distribution
for the disturbance of interest reduces the growth rate of other perturbations. Results
for control of a steady cross-flow mode in a three-dimensional boundary layer subject
to a favourable pressure gradient show that not even large amounts of suction can
completely stabilize the disturbance.

1. Introduction
Laminar–turbulent transition in boundary layers on aircraft causes a rapid increase

of the skin friction and consequently a larger drag. Therefore, delay of transition oc-
currence will reduce the fuel consumption which results in a lower operation cost and
less pollution. Transition in the boundary layer on aircraft wings is usually caused by
breakdown of small disturbances which grow as they propagate downstream. It is well
known that the growth of such disturbances can be suppressed or controlled by steady
or unsteady wall suction. The latter is sometimes referred to as the wave-cancellation
concept and has been investigated both numerically and experimentally by numer-
ous authors, see Joslin (1998) for an excellent overview of earlier experimental and
numerical works.

Steady suction implies a modification of the steady mean flow. Here, the aim is to
reduce the thickness of the boundary layer and to stabilize the mean velocity profile.
The inviscid instability in two-dimensional boundary layers, which is related to the
second wall-normal derivative of the streamwise velocity, is stabilized by suction.
A similar stabilizing effect is obtained by imposing a favourable pressure gradient
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given zero suction on the wall. The relation between suction, the pressure gradient
and the viscous terms in two-dimensional boundary layers is explained well in e.g.
Schlichting (1979). The mean flow obtained using non-zero suction has similarities
with that obtained when a negative pressure gradient is applied. In the case of an
adverse pressure gradient present in the flow, the superposition of suction will reduce
the curvature of the velocity profile at the wall, weakening the inflection in the profile
which inhibits the inviscid instability. It should be noted that the discussion above
relates primarily to exponential instabilities.

Constant steady suction has been studied both experimentally and numerically by
several authors. Iglisch (1949) investigated theoretically the initial length needed for
the shape factor (displacement thickness/momentum thickness) to reach a constant
value in the case of a flat-plate two-dimensional boundary layer. Here, the streamwise
velocity profile becomes ‘fuller’ downstream as suction is applied, finally reaching
the so-called ‘asymptotic suction profile’. With the assumption of an asymptotic
velocity profile along the whole plate, the laminar boundary layer is stable with
respect to two-dimensional T–S wave instabilities if the constant suction velocity
Vw = V?

w/U
?∞ = 1.4 × 10−5. Here, V?

w and U?∞ are the dimensional wall-normal
suction velocity at the wall and free-stream velocity components of the mean flow,
respectively. For the same case, Ulrich (1944) showed that the critical Reynolds
number, Recrit, decreases as the leading edge is approached. Hence, an increasing
amount of suction is required in this region. In Schlichting (1979) it was shown that
a correction due to increased suction close to the leading edge leads to a constant
suction velocity Vw = 1.2× 10−4 in order to maintain a laminar flow along the whole
plate. The increased suction velocity due to the correction of the initial length means
an increased amount of suction energy. If a large amount of suction is applied then
the power saved by the reduction in drag might well be lost by the power used for the
suction device. Further, if a large amount of suction is used, resulting in a thinning of
the boundary layer, then this may lead to an increase of the shear stress at the wall.
It is therefore of interest to investigate if a more optimal suction distribution can be
obtained which meets the objective of reducing the disturbances present in the flow
while using the least amount of suction energy.

In the past decade more interest has been focused on optimal control of fluid
flows in which optimal control theory has been utilized in different manners. Here,
the objective is to minimize some measure of the state with a prescribed amount of
suction on the wall. This can mathematically be described by a minimization of an
objective function which balances a measure of the state and a measure of the control.
The problem can be solved using the sensitivity information given by the gradient of
the objective function with respect to the control in a gradient-based optimization
routine. An efficient way to calculate the gradients is the adjoint approach which
has proved successful in numerous applications such as shape optimization, optimal
control, receptivity, meteorology and optimal perturbations as long as the number
of constraints are low and the control-variable space is large. A recent workshop on
adjoint systems, see Flow, Turbulence and Combustion, Vol. 65 (3/4), 2000, indicates
some of the progress in the field.

Here the wall-normal velocity component of the steady mean flow on the wall
is used as the control, which means that the suction will modify the mean flow to
control disturbance growth rather than generating an out-of phase disturbance by
time-periodic suction. Balakumar & Hall (1999) used a Lagrangian approach to find
the optimal suction distribution for Blasius and swept Hiemenz flows. The objective
was to move the transition point, given by the eN-method, downstream. They found
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that for Blasius boundary layers the optimal suction distribution peaked upstream of
the maximum growth rate and decreased to zero at the transition point.

In the present work we use an approach different from that in Balakumar &
Hall (1999). The control problem is defined using optimal control theory in which
a gradient-based technique is used to update the control during the optimization
process. The aim is to minimize a given objective function balancing a measure of the
total disturbance kinetic energy and the control energy. The mean flow is found by
solving the quasi-three-dimensional boundary layer equations for incompressible flows
and the growth of disturbances is analysed for developing boundary layers using the
parabolized stability equations (PSE) (see Bertolotti, Herbert & Spalart 1992; Malik
& Balakumar 1992; Simen 1992; Herbert 1997). In the framework of these governing
equations we can analyse convective instabilities under the assumption of a slow
variation of both the mean flow and the shape function of the disturbances in the
streamwise direction. We also assume that the streamwise pressure distribution is
not affected by suction at the wall. The mean flow is obtained using the boundary
layer equations (see e.g. Schlichting 1979). In this approximation, as well as in higher-
order approximations, the wall-normal velocity of the mean flow, V , is O(1/Re). Here
Re = U?∞l?/ν? is the Reynolds number in which l? and ν? denote the dimensional
reference length and kinematic viscosity, respectively. In the optimization one must
make sure that this assumption is not violated.

An adjoint-based technique is used to evaluate the gradients (sensitivities). Here,
we couple the adjoint of the PSE with the adjoint of the boundary layer equations
in order to find the gradient of the disturbance growth due to modifications of
the mean flow. The use of the adjoint PSE (APSE) was first proposed by Herbert
(1997) and has since been used for receptivity studies (see Hill 1997a; Airiau 2000;
Dobrinsky & Collis 2000), sensitivity analysis (see Pralits et al. 2000a) and optimal
control problems (see Hill 1997b; Pralits, Hanifi & Henningson 2000b; Walther,
Airiau & Bottaro 2001). Hill (1997b) used a similar approach in inverse design for
laminar boundary layers. However, no details were given there. The common interest
of all these applications lies in the efficient evaluation of receptivity coefficients
and sensitivity information provided by a single solution of the APSE. The major
difference between previous works is in the derivation of the APSE. In Hill (1997a, b),
Airiau (2000) and Dobrinsky & Collis (2000) the APSE is an approximation of the
adjoint of the linearized Navier–Stokes equations given an ansatz similar to the PSE.
The additional equation used to find the ‘adjoint’ streamwise wavenumber comes
from an orthogonality relation between the solutions from the APSE and PSE. In
Dobrinsky & Collis (2000) it is shown that this condition in fact does not hold in a
large part of the domain which means a less accurate adjoint equation. This is said to
depend on the numerical scheme and approximate inflow conditions. In Pralits et al.
(2000a) the APSE is derived directly from the PSE using a variational technique and
the additional equation and inflow conditions are part of the definition of the adjoint
operator. The latter technique, which is shown to have good accuracy in the major
part of the domain, is also used in Pralits et al. (2000b) and Walther et al. (2001).

The optimization process is dependent on the accuracy of the gradient (search
direction), which can be evaluated to better assess the optimization results. In the
present work, the gradient is derived from the continuous state equations which means
that its accuracy can be improved if the resolution is increased, see e.g. Högberg &
Berggren (2000). However, the PSE is known to be unstable for small streamwise
steps due to the remaining ellipticity. Several studies on how to stabilize the PSE have
been done (see Haj-Hariri 1994; Li & Malik 1994, 1996; Andersson, Henningson &
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Hanifi 1998). The approach which best removes the ellipticity while still producing an
accurate result is the technique introduced by Andersson et al. (1998), where originally
neglected higher-order terms, O(Re−2), are reintroduced. This stabilization procedure
will also affect the adjoint equations (see § 2.4).

In this paper we present a method which involves solving a number of problems
regarding the derivation of the gradient, adjoint equations and stabilization of the
adjoint equations. For this reason, a large part of the paper is dedicated to explaining
the different steps in detail. The optimal control problem and the corresponding
equations are presented in § 2. In § 3, the adjoint equations are validated by analysing
the gradient accuracy. Here we also show results on optimal control of steady
streamwise streaks and T–S waves in a two-dimensional boundary layer, and oblique
waves and a steady cross-flow mode in a quasi-three-dimensional boundary layer.
The discussion and concluding remarks are given in § 4 and the complete derivation
of the gradient and the coupling of the adjoint of the parabolized stability and
boundary layer equations are shown in Appendix B. A preliminary version of the
work presented here can be found in the report by Pralits et al. (2000b).

2. Problem formulation
This section presents the optimal control problem for incompressible flows. For

simplicity, we restrict our analysis to a plane geometry.

2.1. State equations

The flow field is given by the solution of the mass and momentum conservation
equations for a viscous flow. The equations are written for a Cartesian coordinate
system with streamwise, normal and spanwise coordinates denoted as x, y and z,
respectively. The flow field is decomposed into a mean, Q, and a perturbation part, q,
as

Qtot(x, y, z, t) = Q(x, y) + q(x, y, z, t),

where Q = (U,V ,W , P )T and q = (u, v, w, p)T . The mean flow, which has zero varia-
tion in the spanwise direction, is a three-component, two-dimensional boundary layer
and is here referred to as a quasi-three-dimensional boundary layer. The evolution of
disturbances is analysed in the framework of the non-local stability theory (see e.g.
Bertolotti et al. 1992; Malik & Balakumar 1992; Simen 1992; Herbert 1997).

In the following sections the equations for the mean flow and disturbances, in non-
dimensional form, are given. The velocity components are made non-dimensional by
U?∞, the pressure by ρ?U?2

∞ and the reference length is taken as l?0 = (ν?x?0/U
?∞)1/2.

Here superscript ? denotes dimensional quantities, ν? the kinematic viscosity, U?∞ the
free-stream velocity and ρ? the density.

2.1.1. Mean flow equations

The non-dimensional boundary layer equations for a quasi-three-dimensional in-
compressible flow on a flat plate with an external pressure gradient given as
dPe/dx = −UedUe/dx can be written

∂U

∂x
+
∂V

∂y
= 0, (2.1)
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U
∂U

∂x
+ V

∂U

∂y
−Ue

dUe

dx
− 1

Re

∂2U

∂y2
= 0, (2.2)

U
∂W

∂x
+ V

∂W

∂y
− 1

Re

∂2W

∂y2
= 0, (2.3)

with the boundary conditions

U = W = 0, V = Vw on y = 0,

(U,W )→ (Ue,We) as y →∞,
}

(2.4)

where index e denotes that the variable is evaluated at the boundary layer edge
and Re = l?0U

?∞/ν? is the Reynolds number. Note that for the boundary layer
approximations to be valid, the normal velocity at the wall, Vw = V?

w/U
?∞, should be

O(Re−1).

2.1.2. Disturbance equations

We assume the perturbations to be time and spanwise periodic disturbances:

q(x, y, z, t) = q̂(x, y) exp i

(∫ x′

X0

α dx′ + βz − ωt
)

+ c.c., (2.5)

where α is the complex streamwise wavenumber, β the real spanwise wavenumber and
ω the real disturbance angular frequency. We assume a scale separation Re−1 between
the weak variation in the x-direction and the strong variation in the y-direction. It
is also assumed that ∂/∂x ∼ O(Re−1) and V ∼ O(Re−1). Introducing (2.5) and the
assumptions above in the linearized governing equations and keeping terms up to
O(Re−1), yields a set of nearly parabolic partial differential equations

Aq̂ + B
∂q̂

∂y
+ C

∂2q̂

∂y2
+ D

∂q̂

∂x
= 0, (2.6)

where the matrices A,B ,C and D are given in Appendix A. For a note on the parabolic
nature of the PSE see Bertolotti et al. (1992), Haj-Hariri (1994), Li & Malik (1994,
1996) and Andersson et al. (1998). To remove the ambiguity of having x-dependence
of both the amplitude function and wave function in (2.5) and to maintain a slow
variation of the amplitude function q̂, a so-called ‘auxiliary condition’ is introduced:∫ ∞

0

ûH
∂û

∂x
dy = 0, (2.7)

where û = (û, v̂, ŵ)T and superscript H denotes the complex conjugate transpose. The
disturbances are subjected to the following boundary conditions:

û = 0 on y = 0

û→ 0 as y →∞.
}

(2.8)

The system of equations (2.6) and (2.7) is integrated in the downstream direction with
the initial condition given by the solution of the local stability theory at x = X0. At
each streamwise position, the value of α is iterated such that (2.7) is satisfied.

2.2. Optimal control of a single disturbance

In this section, we define an optimal control problem where the mean normal velocity
at the wall is optimized to reduce the growth of a single disturbance with a fixed given
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Figure 1. Computational domain: flat-plate boundary layer.

initital condition. The optimization problem is solved by minimizing an objective
function balancing a measure of the state and the control using a gradient-based
method. We obtain the gradient of the objective function using an adjoint technique.
The complete derivation of the equations can be found in Appendix B.

2.2.1. Objective function

We measure the size of a disturbance in domain Ω, defined such that x ∈ [X0, X1],
y ∈ [0,∞) and z ∈ [Z0, Z1] (see figure 1), by its total kinetic energy defined as

E =
1

2

∫ Z1

Z0

∫ X1

X0

∫ ∞
0

uTu dy dx dz.

The objective function to be minimized is

J(Vw) =
1

2

∫ Z1

Z0

∫ X1

X0

∫ ∞
0

uTu dy dx dz +
l2

2

∫ Z1

Z0

∫ X1

X0

Vw
2 dx dz, (2.9)

where l2 > 0 is the regularization parameter and is used to ensure that the size of the
control parameter Vw does not grow unbounded. Now, the control problem can be
defined mathematically as

find Vopt
w ∈ L2(Γc) such that

J(Vopt
w ) 6 J(Vw) ∀Vw ∈ L2(Γc), (2.10)

where Vopt
w is the optimal suction distribution on the wall.

2.2.2. Adjoint equations and the gradient

The gradient of the objective function (2.9) with respect to the control variable is
defined through the directional derivative as

δJ = 〈∇Vw
J, δVw〉 = lim

s→0

∣∣∣∣J(Vw + sδVw)− J(Vw)

s

∣∣∣∣ , (2.11)

where δVw is the variation of the control variable. Here, we derive the gradient
expression using the adjoint of the state equations. Details of the derivation are given
in Appendix B. This yields

∇Vw
J = l2Vw + V ∗w on y = 0. (2.12)
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The value of V ∗w = V ∗(x, 0) in (2.12) is given by the solution of the adjoint of the PSE
and boundary layer equations, hereafter referred to as APSE and ABLE, respectively.
The APSE which is given by (B 11)–(B 15) in Appendix B is here written

AHq∗ − BH ∂q
∗

∂y
+ CH

∂2q∗

∂y2
− DH ∂q

∗

∂x
= fAPSE, (2.13)

∂

∂x

∫ ∞
0

q∗H
∂A

∂α
q̂ dy + i|Θ|2

∫ ∞
0

|û|2 dy = 0, (2.14)

with boundary conditions

u∗ = v∗ = w∗ = 0 on y = 0,

u∗, v∗, w∗ → 0 as y →∞,
}

(2.15)

and initial conditions

q∗ = r∗ = 0 on x = X1. (2.16)

Here, q∗ = (p∗, u∗, v∗, w∗)T and r∗ are the co-state variables and fAPSE is the forcing
due to the auxiliary condition of the PSE and the objective function. Equations
(2.13)–(2.14) are integrated in the upstream direction starting at x = X1. At each
streamwise position, the value of the scalar r∗ is iteratively found such that (2.14)
is satisfied. The ABLE, given by (B 16)–(B 18), are satisfied by the co-state variables
Q∗ = (U∗, V ∗,W ∗). They are here written as

L∗BLE(Q)Q∗ = fABLE, (2.17)

with boundary conditions

U∗ = W ∗ = 0 on y = 0,

U∗, V ∗,W ∗ → 0 as y →∞,
}

(2.18)

and initial conditions

U∗ = V ∗ = W ∗ = 0 on x = X1. (2.19)

The forcing term in (2.17), fABLE , is a function of the solutions of both the PSE and
the APSE. Equation (2.17) is integrated in the upstream direction starting at x = X1.
The optimization procedure can now be outlined as the following steps, see the chart
given in figure 2, where k denotes the iteration number.

(i) The BLE (2.1)–(2.3) are integrated from x = X0 to x = X1. If k = 1 then
Vk

w = 0 (initial guess for the suction distribution).
(ii) The PSE (2.6)–(2.7) are integrated from x = X0 to x = X1, then the APSE are

integrated from x = X1 to x = X0.
(iii) fABLE is calculated from the solution of both the PSE and APSE.
(iv) The ABLE (2.17) is integrated from x = X1 to x = X0 given the forcing, fABLE ,

from (iii).
(v) If k < 2 then goto (vi), else evaluate the convergence criteria: If Jk+1−Jk < err

then convergence is reached else goto (vi). Here err is a small real-valued parameter
defining the convergence.

(vi) The gradient, (2.12), is evaluated and the new boundary condition for the
BLE, Vk+1

w , is calculated using an optimization routine (here we use a limited-memory
quasi-Newton method). Continue: k = k + 1, goto (i).
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Figure 2. Chart of the solution process.

The gradient of the objective function due to a variation of the free-stream velocity
can be derived in the same manner as for Vw and yields

∇Ue
J = −Ue

∫ ∞
0

∂U∗

∂x
dy. (2.20)

This variation would be the result of a change in the geometry and consequently the
pressure distribution. Effects due to geometry changes are not investigated here.

2.3. Optimal control of multiple disturbances

In this section we generalize the technique introduced above to find the optimal
suction distribution of the steady mean flow that accounts for the growth of more
than one disturbance. This is necessary for cases where it is not possible to clearly state
which disturbance will grow the most and thus cause laminar–turbulent transition
first. An example of this is the two-dimensional Blasius boundary layer where either
T–S wave-type instabilities or steady streamwise streaks could give the maximum
growth at a given streamwise position. The measure of disturbance kinetic energy
in Ω is now taken as the sum of the energy of a chosen number of pre-defined
disturbances in a convectively unstable flow. In this case, the suction distribution will
be optimal for the sum of these disturbances. Our approach is however different from
non-cooperative strategies (see Bewley & Liu 1998; Bewley & Moin 1997) which
analyse worst-case scenarios, so-called robust control. There, the strategy is to find
the best control in the presence of the worst-case external disturbance.

The analysis here does not differ much from the one outlined in § 2.2 and is
therefore done in a more compact form here. If we denote the total number of
existing disturbances by N then the total kinetic energy is defined as

E =

N∑
k=1

1

2

∫ Z1

Z0

∫ X1

X0

∫ ∞
0

uTk uk dy dx dz.

The objective function to be minimized is now

J(Vw) =

N∑
k=1

1

2

∫ Z1

Z0

∫ X1

X0

∫ ∞
0

uTk uk dy dx dz +
l2

2

∫ Z1

Z0

∫ X1

X0

Vw
2 dx dz. (2.21)

The same procedure to find the gradient of J with respect to Vw as given in Appendix B
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for control of single disturbances is now used to account for several disturbances. As
the control problem is derived for steady suction, the case of multiple disturbances
does not introduce any further complications. Equation (2.11) is used to define the
gradient which can now be written

∇Vw
J = l2Vw +

N∑
k=1

(V ∗w)k on y = 0. (2.22)

Equation (2.22) implies that each equation in the solution procedure given in figure 2
must be solved N times, i.e. for each disturbance, before evaluating the gradient.
Instead, one can use the fact that the ABLE are linear equations. In this case, for a
given solution of the BLE, the PSE and the APSE are solved N times, step (ii) related
to figure 2. The forcing term of the ABLE, step (iii), is then computed as the sum of
N realizations. In step (iv), the ABLE are solved once given the total forcing from
all N disturbances. The gradient is finally evaluated from (2.12) which was given for
control of single disturbances. However, now a single evaluation of V ∗w accounts for
all N disturbances.

It should be mentioned that the evaluation of the initial disturbances far upstream
of the neutral point may be difficult. Therefore, if we consider a large number
of different disturbances whose neutral points are widely spread in the streamwise
direction, care has to be taken when X0 is chosen.

2.4. Adjoint of the stabilized PSE

In gradient-based optimization, an increased accuracy of the gradient will give a
result closer to the optimum. The gradient presented here, (2.12), is derived using
a so-called continuous approach. This means that the adjoint of a state equation is
derived from the continuous equation and then discretized. Another approach is to
first discretize the state equation and then derive its adjoint, the so-called discrete
approach. The latter yields a more accurate gradient in most cases but its derivation
is more complicated. However, results of the continuous approach should converge
to those of the discrete one as the grid resolution is refined (see Högberg & Berggren
2000). It is well-known that the PSE become unstable as the grid in the streamwise
direction is refined due to ellipticity remaining in the equations (see Haj-Hariri 1994;
Li & Malik 1994, 1996; Andersson et al. 1998). This problem will therefore put a
limit on the accuracy of the gradient unless some technique is used to overcome
the instability problem and allow a smaller step size in the streamwise direction.
A stabilization procedure was presented by Andersson et al. (1998) in which they
add terms proportional to the truncation error of the implicit scheme used in the
streamwise direction. These terms are of the same order as some of the originally
neglected terms in the PSE. It was shown that the procedure does not alter the PSE
results while allowing higher streamwise resolution. The procedure here, however, not
only adds terms to the PSE but also affects all adjoint equations since we derive the
adjoint from the PSE and not the adjoint linearized Navier–Stokes equations. Here,
we present an outline of how to derive the PSE, gradient and adjoint equations, using
the stabilization technique given by Andersson et al. The details of the derivation
can be seen in Appendix B, §B.3. Following Andersson et al., terms O(Re−2) are
introduced in (2.6). The stabilized PSE can be written

−D ∂q̂
∂x

= A

[
q̂ + s

∂q̂

∂x

]
+ B

[
∂q̂

∂y
+ s

∂

∂x

(
∂q̂

∂y

)]
+ C

[
∂2q̂

∂y2
+ s

∂

∂x

(
∂2q̂

∂y2

)]
, (2.23)



138 J. O. Pralits, A. Hanifi and D. S. Henningson

where s is a positive real number. The gradient (2.12) and the adjoint equations were
derived in Appendix B without the stabilization terms. Now, the derivation has to be
performed using (2.23) instead of (2.6) which yields the following adjoint equations:

−DH ∂q
∗

∂x
= −

[
AHq∗ − sÃH ∂q

∗

∂x

]
+ BH

[
∂q∗

∂y
− s ∂

∂x

(
∂q∗

∂y

)]
−CH

[
∂2q∗

∂y2
− s ∂

∂x

(
∂2q∗

∂y2

)]
+ fAPSE, (2.24)

∂

∂x

∫ ∞
0

q∗H
∂A

∂α

[
q̂ + s

∂q̂

∂x

]
dy + i|Θ|2

∫ ∞
0

|û|2 dy = 0, (2.25)

L∗BLE(Q)Q∗ = f̃ABLE, (2.26)

where fAPSE and fABLE denotes the forcing terms of the APSE and ABLE respectively
and the tilde marks where additional terms due to the stabilization procedure appear.
Note here that there is no influence on the gradient expression or on the boundary
conditions of the state and adjoint equations due to the stabilizing terms. The
additional terms on the right-hand side of (2.24) resemble the stabilizing terms in
(2.23) apart from the sign difference on s. The APSE resembles the PSE and the new
right-hand side of (2.24) will indeed be a stabilizing term allowing a smaller step size
in the streamwise direction and the calculation of a more accurate gradient.

3. Results
The results presented are obtained by numerically integrating the discretized state

and co-state (adjoint) equations. The x-derivatives are approximated by a first- or
second-order-accurate backward Euler scheme. The y-derivatives of the PSE and
APSE are approximated by Chebychev-polynomials and a second-order-accurate
finite-difference scheme for the BLE and ABLE. The L-BFGS-B package, which
is based on the limited memory quasi-Newton method, is used in the optimization
procedure (see Zhu et al. 1994; Byrd et al. 1995). Here we take Jk+1 − Jk = 10−15 as
a converged solution. The gradient accuracy has been checked for the first and last
iteration of the optimization process.

In all the results shown here, except for figure 9, the optimal suction distribution
is computed for the whole streamwise computational domain. In figure 9 different
control domains are investigated. In all computations, the suction is zero at the
first streamwise point to ensure that the original assumption of zero variation of
disturbance at X0 is met.

The relation among the regularization parameter, reduction of disturbance kinetic
energy and control energy for all cases is found in the end of this section.

3.1. Validation and accuracy of the gradient

The optimization procedure depends on the accuracy of the gradient. If its accuracy
is low, then it is less likely to find a minimum and convergence problems will be
encountered. Here, we check the accuracy of the gradient by a comparison of the
adjoint-based gradients (2.12) with those obtained from a finite-difference approach.
The comparison is done by considering a wall-normal velocity perturbation δVw at
y = 0. The variation of the functional J with respect to this perturbation is

δJ =
∂J

∂Vw

δVw. (3.1)
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In the finite-difference approach ∂J/∂Vw is obtained by using the inhomogeneous wall
boundary condition Vw = ±εw at x = xn. The index n refers to the nth streamwise
position and εw is a small positive number. The derivative is then evaluated using
a second-order-accurate finite-difference scheme. The discretized expression for δJ in
the adjoint approach is given by

δJ =

∫ Z1

Z0

(
N−1∑
n=2

∇Vw
JnδVwn

∆n

)
dz, (3.2)

where ∆n = (xn+1 − xn−1)/2. In figure 3(b), the relative error between dJ/dVw and
∇Vw

Jn∆n is compared for different streamwise resolution ∆Re. The calculations are
done for a streamwise range Re = 250–760 on a quasi-three-dimensional boundary
layer where dPe/dx = 0, given a T–S wave as the initial disturbance at x = X0.
The inviscid flow at Re = 250 has an angle of 30◦, the non-dimensional spanwise

wavenumber β = 0 and the reduced frequency F = 2πf?ν?e /U
?
e

2
= 10−4. As can be

seen in figure 3(b), the relative error decreases as ∆Re is decreased. Here, ∆Re = 6
is the minimum streamwise step size for which the PSE calculations are stable. The
values for ∆Re = 2 are computed using the stabilization terms, as explained in § 2.4.
In figure 3(a), the gradient obtained from the adjoint equations is compared with
central-differences when ∆Re = 2 in order to visualize the agreement.

The results presented in this section, had ∆Re chosen such that the relative error
(err) was approximately 1%, which required the use of the stabilization procedure.
A study was conducted on the influence of changing the streamwise resolution for
control of T–S waves in the Blasius boundary layer. It was found that an increased
resolution gives a faster convergence and a decrease of the objective function.

3.2. Two-dimensional boundary layers

In this section we investigate disturbance control in a two-dimensional boundary
layer with zero pressure gradient. The disturbances studied here are chosen to be a
T–S wave and/or optimally growing steady streamwise streaks. The initial conditions
for T–S waves are taken as the solutions of the local stability theory and the initial
condition for the streaks has been calculated using the theory given in Andersson,
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Berggren & Henningson (1999). For T–S waves, the streamwise range is chosen such
that the unstable region is found between X0 and X1. In § 3.2.1 the optimal suction
distribution is calculated to control each of these disturbances individually. Here,
we also investigate the effect of different domains along the streamwise axis for the
control of T–S waves.

The results in this section on control of T–S waves are for a disturbance with a
frequency of F = 10−4. It is shown that the optimal suction distribution obtained
to control the chosen T–S wave has a stabilizing effect on T–S waves with other
frequencies. A study has also been performed on the control of T–S waves with
both higher and lower frequencies than the one shown here. However, the effect of
the optimization process on the growth rate of these disturbances, the corresponding
optimal suction profiles and mean flow modifications all show the same behaviour.
Thus this choice of frequency gives the general behaviour of the optimization process
for a T–S wave instability in a two-dimensional boundary layer.

3.2.1. Control of single disturbances

The optimal distribution of suction to control steady streamwise streaks is cal-
culated for a streamwise range Re = 412–730. The initial condition which has the
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(d ) The objective function as a function of the iteration step.

maximum energy at X1 is computed using the optimization procedure given in An-
dersson et al. (1999). The non-dimensional spanwise wavenumber β = 0.292 and the
frequency ω = 0. Three test cases are analysed for these parameters in which the regu-
larization parameter l2 was 1, 10 and 103 and the control is applied at Re = 418–724.
In figure 4(a) the optimal suction distributions for all cases are compared. A peak
in the suction distribution is seen upstream which becomes more pronounced as the
regularization parameter is decreased. In figure 4(b) the disturbance kinetic energy
of zero and optimal suction are compared. All three suction distributions result in
a decrease of the disturbance kinetic energy. However, the main difference between
the curves where control is applied is seen in the upstream region. The effect of the
optimal suction distributions given in figure 4(a) is that the damping of the distur-
bance kinetic energy is increased in the upstream region as l2 is decreased. Figure 4(c)
illustrates the changes in the suction distribution during the optimization procedure.
Here, Vw is plotted for each iteration in the optimization loop for the case with
l2 = 102. The optimal distribution is found after 7 iterations. The difference between
the sixth and seventh iteration cannot be distinguished. In figure 4(d ) the objective
function is given as function of the iteration number for all cases to illustrate the
convergence of the optimization procedure.

The optimal distribution of suction to control T–S wave instabilities is calculated
for a streamwise range Re = 250–760. The first investigation compares different
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regularization parameters, here l2 = 102, 103, 104, 105 while control is applied at
Re = 256–754. The results can be seen in figure 5. In figure 5(a) the optimal suction
distributions from all cases are compared. The optimal suction distribution tends to
peak upstream as the penalty on the control is reduced, and this peak is upstream
of the unstable region for all cases. Even though the magnitude of the suction rates
is within the original assumptions, one should also note that a decreased penalty
on the control produces suction distributions with large streamwise variations in the
upstream domain. At the point where our results show a peak they are thus locally
outside the range of validity of the parabolic theory employed, since the gradient of
the control velocity at the initial control point approaches infinity as the step size in
the streamwise direction approaches zero. In figure 5(b) the disturbance kinetic energy
is compared for zero and optimal suction distribution. A reduction of disturbance
kinetic energy can be observed as the penalty of the control is reduced. The growth
rate for all cases is given in figure 5(c). In all cases the growth rate is decreased as l2

is decreased and the reduction is more pronounced in the upstream region. Finally,
in figure 5(d ) the objective function is plotted as a function of the iteration number
to show the convergence of the optimization procedure.

A question that arises is whether the suction distribution which is optimal for
one chosen T–S wave will damp or amplify other instability waves in the chosen
streamwise domain. This is analysed by computing the maximum local growth rate,
i.e. local growth rate over all possible frequencies, at a number of streamwise positions
both with zero and the optimal suction distribution. The streamwise range and optimal
suction distribution are taken from figure 5 with l2 = 105. The results are shown in
figure 6 where the maximum local growth rate has been computed for ∆F = 2.5×10−6

and ∆Re = 50 as the reduced frequency and streamwise resolution respectively. Here,
it is shown that the optimal suction distribution for one given frequency has a
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Figure 7. Modification of the two-dimensional mean flow (dPe/dx = 0) and disturbance velocity
due to optimal suction computed to control a T–S wave with F = 10−4 when l2 = 102 in a
streamwise range Re = 250–760. Results are presented for Re = 256, 400, 598. (a) Streamwise and
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stabilizing effect on all other frequencies in the given streamwise range. Further,
the local growth rate for the T–S wave with F = 10−4 has been plotted both with
zero and optimal suction distribution. The result shows that the chosen disturbance
corresponds to the maximum growth rate both with zero and optimal suction at a
given streamwise position.

The effect of imposing suction at the wall is that the velocity profile of the mean flow
becomes fuller, which is known to stabilize the viscous instability waves. In figure 7
the effects on the streamwise and wall-normal velocity components of the mean flow
are shown for three different streamwise positions. The streamwise and wall-normal
disturbance velocity components are also plotted. The suction distribution is that of
figure 5 for l2 = 102. The first position, Re = 256, is close to X0, the second position
Re = 400 is close to where the disturbance starts to grow and the last position
Re = 598 is roughly halfway into the unstable region. In figure 7(a) the streamwise
velocity profile is plotted for these three positions, when zero and optimal suction are
applied. In all three cases the mean flow profiles have become fuller (or thickened). It
should be noted that even though the optimal suction distribution shows a significant
peak in the vicinity of Re = 256, see figure 5(a), the effect on the streamwise mean
velocity is not large. The effect of suction on the mean flow is instead more pronounced
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for the wall-normal component, see figure 7(c), especially in the upstream region. The
amplitudes of the streamwise and wall-normal disturbance velocities are shown for
the cases of zero and optimal suction in figures 7(b) and 7(d ), respectively. The initial
condition is the same for zero and optimal suction and the effect of suction on both
components is similar. At the upstream position, the variation due to suction is small.
The results at the most downstream position show a larger reduction of disturbance
amplitude. Here, the results for the case of optimal suction at Re = 400 and 598
are magnified to make the shape visible. In all cases the disturbance shape is the
same as the optimal suction distribution is applied but the magnitude is decreased.
Further, the peak velocity is moved somewhat closer to the wall due to the decreased
boundary layer thickness.

As pointed out in the introduction, the mean flow pressure distribution is assumed
to be unchanged by the applied suction. If this were not the case, then an additional set
of equations would be needed in order to solve for the exterior pressure distribution
in the optimization process. In order to gain some insight into this, the shape factor
H12 (displacement thickness/momentum thickness) is plotted in figure 8(a) for all
cases in figure 5. In figure 8(b) the relative change of H12 between the controlled and
uncontrolled case is plotted. For the three cases l2 = 103, 104, 105, the difference in
shape factor ranges between 0.5% and 2%. However, for the case of l2 = 102 a peak
of 6% difference appears in the upstream region. Note, that all cases have maximum
suction velocities which are smaller than the original assumption of Vw ∼ O(1/Re).

Figure 9 illustrates the effects of changing the size and location of the control
domain. Here, the same case as in figure 5 with l2 = 103 is used. Three different
control regions are compared. In the first case, the control is applied to Re = 412–554
which is from the initial point of the unstable region (branch I of the neutral stability
curve) to roughly halfway into the unstable region. In the second case, Re = 412–718,
the control domain is extended over the whole unstable region and in the last case,
Re = 256–754, the control is applied over the whole computational domain. The
corresponding optimal suction velocity profiles can be seen in figure 9(a). Results
for all cases show a suction peak in the upstream region of the control domain. In
figure 9(b) the kinetic disturbance energy is shown for all cases. The first case shows
a significant reduction of energy as the control is applied but continues to grow when
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objective function as a function of the iteration step.

the control is turned off. The second and last cases show that approximately the
same reduction of energy at the final streamwise position can be obtained either by
acting only in the unstable region or in the whole domain. The growth rate is given
in figure 9(c). In the first and second cases, the growth rate follows the curve of zero
suction until the control is turned on. A large reduction in growth rate can then be
seen in the upstream region of the control domain. The first case shows a significant
increase as the control is turned off inside the unstable region. In figure 9(d ) the
objective function is plotted as a function of the iteration number to visualize the
convergence of the optimization procedure.

3.2.2. Control of multiple disturbances

The theory in § 2.3 was introduced to account for more than one disturbance in
the domain. This will produce an optimal suction profile that reduces the disturbance
kinetic energy for all disturbances accounted for. Here, we analyse two disturbances,
a T–S wave and optimally growing streamwise steady streaks, with an initial energy
such that they give the same maximum disturbance energy at the downstream position
X1. The domain is chosen so that X0 and X1 are at the first and second branches of
the neutral stability curve for the T–S wave with F = 10−4. The initial condition for
the steady streaks is computed using the optimization technique given in Andersson et
al. (1999) to provide the maximum growth at X1 for the chosen domain. In all calcula-
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tions l2 = 103 which means that the same weighting is given between the disturbance
and control energy in all cases. The optimal suction profile was first computed for
each of the disturbances individually. A comparison of the disturbance kinetic energy
for zero and the corresponding optimal suction can be seen in figure 10(a). It is shown
that the reduction of kinetic energy is more than two decades larger for the T–S wave
as the optimal control is applied. Given the same l2, it is therefore possible to say that
optimally growing streamwise streaks demand a stronger control than T–S waves.
The corresponding suction distributions can be seen in figure 10(c). It can be seen in
this comparison that the magnitude of the control of steady streaks is larger than for
T–S waves. This is expected however, as the total disturbance kinetic energy of the
streaks is larger than that of the T–S wave given that the energy is the same at X1, see
figure 10(a), and therefore should result in a larger control energy. Then, the optimal
suction profile was calculated for the sum of both disturbances using (2.22) with
l2 = 103. In figure 10(b), the disturbance kinetic energy is shown when the optimal
control for the sum of both disturbances is applied to each disturbance individually
and the sum of both disturbances. The corresponding optimal suction distribution
can be seen in figure 10(c). Here, the total kinetic energy for the streaks is larger
than for the T–S wave, and the control will act primarily on the streaks. Therefore,
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the optimal suction distribution for the sum of the disturbances is similar to that of
the streaks. When the optimal suction profile for the sum is used on the T–S wave
then the energy decreases further and drops to 10−11, out of range in figure 10(b), at
the downstream position X1. This is 5 decades lower than the optimal suction profile
for control of just the T–S wave gives. In figure 10(d ) the objective function is given
as a function of the iteration number to show the convergence of the optimization
process.

3.3. Three-dimensional boundary layers

Here, we study the control of three-dimensional disturbances in quasi-three-
dimensional boundary layers subjected to a pressure gradient. In the first case,
the flow is subjected to an adverse pressure gradient and the disturbance parameters
have been chosen such that it has the maximum growth rate (over all F and β) at
some position in the computational domain. Further studies have been performed on
control of oblique waves with other frequencies and spanwise wavenumbers than the
one shown here. The behaviour of the optimal suction distributions, mean flow and
disturbances are similar. Therefore, we find that the disturbance parameters chosen
here represents the general behaviour of the optimization process and results. In
the second case, control is presented for a steady cross-flow mode in a mean flow
with a favourable pressure gradient where we have chosen the case from Högberg
& Henningson (1998). Although the stationary cross-flow modes are not the most
amplified ones, in the presence of surface roughness they are often the dominant
disturbances.

3.3.1. Control in a flow with an adverse pressure gradient

The control of an oblique wave is analysed in a quasi-three-dimensional incom-
pressible boundary layer with an adverse pressure gradient (Ue = (x/x0)

−0.05). The
streamwise range is Re = 250–760, the non-dimensional spanwise wavenumber
β = −0.02 and the reduced frequency F = 10−4. The inviscid flow at Re = 250
has an angle of 45◦ and the control has been applied at Re = 256–754. In this case
l2 has been altered to compare the impact of different regularization parameters on
the control energy used. The results comparing various l2 can be seen in figure 11.
In figure 11(a) the optimal suction distribution Vw is plotted. A suction peak ap-
pears at an upstream position of the control domain and is more pronounced as
l2 is decreased. Downstream of the suction peak the suction distribution is nearly
constant before it finally decreases to zero. It is evident from this figure that a
decreased penalty on the control will concentrate the increased control effort in
the upstream domain. This creates, as in figure 5, a strong streamwise variation of
the suction distribution in this region. The disturbance kinetic energy is compared
in figure 11(b) for the cases of zero and optimal suction distribution. A reduc-
tion of kinetic energy is observed in all cases, starting in the upstream region of
the control domain. Further, the reduction is increased as l2 is decreased. In fig-
ure 11(c) the growth rate is compared for zero and optimal suction distribution
and it is shown that the growth rate is decreased as l2 is decreased. Note that the
growth rate for the case with l2 = 102 shows a strong streamwise variation in the
upstream domain. In figure 11(d ) the objective function is plotted for each itera-
tion in the optimization loop to demonstrate the convergence of the optimization
process.

In this analysis only one oblique wave has been considered. The effects on the
growth rate of other oblique waves are investigated using the suction distribution
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objective function as a function of the iteration step.

from the analysis above with l2 = 102. This is done by computing the local growth
rate in the (F, β) plane at two different streamwise positions. Contours of the local
growth rate are given in figure 12 where the thick contours mark zero growth rate
and the • marks the oblique wave analysed in figure 11. Note here that the reduced
frequency F , the non-dimensional spanwise wavenumber β and the growth rate are
scaled with the reference values taken at X0. Figure 12(a) shows the local growth rate
for oblique waves at Re = 418 with zero suction. Here it is shown that the disturbance
analysed in figure 11 is close to the maximum growth rate for all oblique waves at this
streamwise position. No figure is shown for the case when optimal suction is applied
as all waves are damped at this position. The result in figure 12(b, c) correspond to
Re = 676 with the mean flow subjected to zero and optimal suction respectively. The
optimal suction is shown to make all oblique waves more stable. However, the effect
is less than in the upstream region.

It is also of interest to see how the inflection point due to the adverse pressure gradi-
ent is affected by the optimal suction. The suction distributions shown in figure 11(a)
are similar except for the upstream region. Therefore, the case of figure 11 with
l2 = 105 is chosen to see if the smallest amount of suction still affects the inflection
point of the mean flow. The results for two different streamwise positions are seen in
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values at X0. The thick contours denote zero growth rate and the contour spacing is 0.0005. The •
marks the disturbance initial condition used in figure 11.
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Figure 13. Modification of the three-dimensional mean flow with an adverse pressure gradient
(Ue = (x/x0)−0.05) and disturbance velocity, due to optimal suction (l2 = 105). The inviscid flow
at Re = 250 has an angle of 45◦ and the control is computed for an oblique wave (F = 10−4,
β = −0.02 at Re = 250) between Re = 250 and 760. Up = (αrU + βW )/k and the absolute value of
the streamwise and spanwise disturbance velocity are denoted u and w respectively. The streamwise
positions are: Re = 262 in (a, b) and Re = 694 in (c, d ).

figure 13. Here the mean flow has been projected in the direction of the wavenumber
vector k, with absolute value k = (α2 + β2)1/2, and is given as Up = (αU + βW )/k.
In figure 13(a) Up and its corresponding second wall-normal derivative are shown at
Re = 262. The effect of the optimal suction is small but increases the velocity inside
the boundary layer. The plot of the second wall-normal derivative of Up shows that
the inflection point has almost disappeared. The effect on the disturbance velocities
due to the mean flow modification at Re = 262 is shown in figure 13(b). Here, the
absolute value of the streamwise and spanwise disturbance velocities are plotted. Both
components have maintained their shape but the maximum values are decreased and
moved towards the wall. The quantities in figure 13(a, b) are plotted at Re = 694 in
figure 13(c, d ) respectively. At this streamwise position all suction distributions shown
in figure 11(a) are similar and therefore are the mean flow modifications at this
position similar for all cases shown in figure 11. The mean flow components shown
in figure 13(c) have become fuller. However, the inflection point of the streamwise
component does still exist but has moved towards the wall. The maximum values of
the disturbance velocities shown in figure 13(d ) have moved closer to the wall and
decreased by a factor of 103. Further, it is noted that the disturbance shape has been
maintained here also.
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Figure 14. Control of a stationary cross-flow mode in a three-dimensional boundary layer with
a favourable pressure gradient (Ue = (x/x0)0.34207). The inviscid flow at Re = 346 has an angle
of 55.26◦ and the non-dimensional spanwise wavenumber β = −0.256. Results are presented for
l2 = 103, 104, 105, 106. (a) Optimal suction distributions. (b) Growth rate −Im(α).

3.3.2. Control in a flow with a favourable pressure gradient

The control of a steady cross-flow mode is analysed in a quasi-three-dimensional
incompressible boundary layer with a favourable pressure gradient taken from
Högberg & Henningson (1998) (Ue = (x/x0)

0.34207). The streamwise range is Re =
346–746 and the inviscid flow at Re = 346 has an angle of 55.26◦. Here, the control
has been applied at Re = 351–741. The initial condition of the disturbance is taken
as the local solution at Re = 346 where the non-dimensional spanwise wavenumber
is β = −0.256.

In figure 14 results are presented for the optimization with different values of the
regularization parameter l2. Here, l2 = 103 gives a maximum suction velocity which
is close to the maximum value for which the boundary layer equations are valid (see
§ 2.1.1). The optimal suction distributions due to the variation of l2 are shown in
figure 14(a). As l2 is decreased the magnitude of the suction velocity is increased. The
maximum of the suction velocity is found in the upstream region in all cases but does
not appear as a pronounced peak as was shown in § 3.2 and § 3.3.1.

The corresponding growth rates for zero and optimal suction are presented in
figure 14(b). The uncontrolled steady cross-flow mode studied here has a positive
growth rate in the whole domain and it is shown here that the optimal suction
reduces the growth rate. However, not even the largest magnitude of steady optimal
suction, i.e. the smallest l2, can stabilize the cross-flow mode. The largest reduction of
growth rate is found at approximately the same streamwise position regardless of l2

and it should be noted that this is far downstream of the point where suction has its
maximum.

The results shown in this section have not been computed given a certain amount
of control energy. Instead, the regularization parameter l2, given in (2.9), has been
used to balance the measured disturbance kinetic energy and the control energy.
In practice this means that increasing l2 will decrease the available control energy
and vice versa in the optimization process. In an application of this theory it might
be of interest to see how the benefit (reduction in disturbance kinetic energy) is
related to a certain amount of control energy. This can be seen in figure 15(a)
for all cases studied in this section. Here, the benefit is given as the ratio between
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Figure 15. Relation between reduction in disturbance kinetic energy and (a) optimal control energy
Ec, (b) the regularization parameter l2. Here Eopt and E are the disturbance kinetic energies given
optimal and zero suction respectively.

the disturbance kinetic energies for optimal and zero suction denoted as Eopt and
E, respectively. The corresponding relation between l2 and the benefit is given in
figure 15(b).

4. Discussion and conclusions
A procedure to control disturbances in quasi-three-dimensional incompressible

boundary layers on a flat plate has been derived and analysed. Here, disturbances are
controlled by modifying the mean flow using the wall-normal velocity component of
the mean flow on the wall. The optimization procedure is gradient based and the aim
is to minimize an objective function balancing a measure of the state and the control
energy. The gradient is derived using adjoint equations and the coupling between the
adjoint of the PSE (APSE) and the adjoint of the boundary layer equations (ABLE)
is shown. The measure of the state is the disturbance kinetic energy in the whole
domain and here it has been generalized to account for more than one disturbance.

To increase the streamwise resolution, a stabilization procedure has been used for
the PSE which modifies both the APSE and the ABLE. The gradients derived using
the adjoint equations have been validated with a finite-difference approach and it
has been shown that the gradient accuracy is increased as the streamwise resolution
is increased. A finite-difference check has also been continuously done on the final
gradients in the optimization, indicating that the continuous approach used for the
derivation of the adjoint equations has been adequate.

Numerical results have been presented for disturbance control in both two- and
quasi-three-dimensional incompressible boundary layers. The results shown for suction
distributions have a similar shape for control of T–S wave instabilities and steady
optimally growing streamwise streaks in two-dimensional boundary layers and oblique
waves in quasi-three-dimensional boundary layers. The suction profiles tend to peak
close to the first point of the computational domain but become significantly smaller
and nearly constant further downstream. This tendency become more pronounced as
the penalty of the control l2 is reduced, i.e. the freedom of the control is increased.
Although the magnitudes of the suction distributions are Vw ∼ O(Re−1), care must
be taken as a decrease in l2 may result in large streamwise variations of both Vw and
the growth rate. Care must be taken so that this variation is small enough not to
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contradict the underlying hypothesis of a slow streamwise variation assumed in both
the BLE and PSE.

If solutions without sharp peaks are desired then additional terms can be added
to the objective function in which a penalty is put on for example the streamwise
derivative of the control variable. This procedure has been used in shape optimization
problems, for example, where the goal has been to create not only an optimal geometry
but also with a certain degree of smoothness. Such constraints are not investigated
here as they are more connected to user applications and an extension of the optimal
control theory rather than the methodology itself.

In both two- and quasi-three-dimensional boundary layers it has been shown
that the boundary layer velocity profiles have become fuller as the optimal suction
distribution is applied. Both of these observations show that the stabilization obtained
by the suction distribution is a modification of the mean flow similar to that of a
flow with a favourable pressure gradient with zero suction. The relation between
the suction velocity, pressure gradient and second wall-normal derivative of the
streamwise velocity on the wall is understood by looking at (2.2) for y = 0:

Vw

∂U

∂y
+

dPe
dx

=
1

Re

∂2U

∂y2
. (4.1)

In the case of a Blasius mean flow (dPe/dx = 0), the right-hand side of (4.1) gives
the favourable pressure gradient which corresponds to a certain suction velocity.
However, in the case of an adverse pressure gradient (dPe/dx > 0), the modification
is dependent on the magnitude of the suction velocity as neither of the two terms on
the left-hand side of (4.1) is zero. Here, a favourable pressure gradient is only obtained
if Vw∂U/∂y < dPe/dx. A stabilizing effect will still occur if Vw∂U/∂y > dPe/dx but
the location of the inflection point due to the adverse pressure gradient will be
dependent on the magnitude of Vw.

As a result of the optimal suction distribution, the disturbance kinetic energy is
decreased as the control energy is increased (here shown by decreasing l2). For control
of T–S waves in two-dimensional boundary layers and oblique waves in quasi-three-
dimensional boundary layers, the growth rate has the largest decrease in the upstream
domain when l2 is decreased. This corresponds to where the optimal suction has its
peak. When control is applied to the steady cross-flow mode, the largest decrease
in growth rate is at the same streamwise location independent of l2. Further, this
is far downstream of the point where the suction has its maximum. For T–S wave
instabilities in the Blasius flow it has been shown that essentially the same energy
reduction at the last streamwise point is achieved when the control is applied in the
whole unstable region compared to control which starts just upstream and ends just
downstream of the unstable region.

One of the assumptions made in this analysis is that the disturbances have homo-
geneous boundary conditions at the wall and therefore no coupling to the mean flow
at the wall. This can be interpreted as uniform suction through a porous material.
The validity of these boundary conditions should be analysed if instead discrete holes
are used.

J. O. P. acknowledges the Swedish Foundation for Strategic Research (SSF) who
has financed this work through the Integral Vehicle Structure (IVS)-program.
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Appendix A. Matrices of the PSE
The matrices A,B ,C and D in the PSE are

A =



iα 0 iβ 0

ξ +
∂U

∂x

∂U

∂y
0 iα

0 ξ +
∂V

∂y
0 0

∂W

∂x

∂W

∂y
ξ iβ


, B =


0 1 0 0

V 0 0 0

0 V 0 1

0 0 V 0

 ,

C =



0 0 0 0

− 1

Re
0 0 0

0 − 1

Re
0 0

0 0 − 1

Re
0


, D =


1 0 0 0

U 0 0 1

0 U 0 0

0 0 U 0

 ,

where

ξ = −iω + iαU + iβW +
1

Re
(α2 + β2).

Appendix B. Derivation of adjoint equations
The gradient of the objective function, J , with respect to the wall-normal velocity

component of the mean flow on the wall, Vw, is derived using the APSE and the
ABLE. The question is whether to use a ‘discrete’ or ‘continuous’ formulation. One of
the conclusions in Högberg & Berggren (2000) was that a continuous formulation is a
good enough approximation if control is performed on a problem with a dominating
instability. Here, the analysis is done for dominating instabilities using the PSE so a
continuous approach has been chosen for the derivation of the adjoint equations.

B.1. Inner product

For a compact notation of the adjoint equations, we will use the formal adjoint L∗
for the differential operator L defined by the relation

(ψ, Lφ) = (L∗ψ, φ) + boundary terms, (B 1)

where the inner product (· , ·) is defined as

(φ, ψ) =

∫ Z1

Z0

∫ X1

X0

∫ ∞
0

φHψ dy dx dz, (B 2)

for Cn-valued functions φ and ψ. Here, the superscript ∗ denotes adjoint quantities
and ψ is denoted the co-state variable which is chosen such that it satisfies the adjoint
equations L∗ψ = 0.

B.2. Derivation of the gradient

The idea behind the derivation is to identify the gradient from the boundary terms in
(B 1). There are earlier results on the derivation of the APSE (see Airiau 2000; Hill



Optimization of steady suction for disturbance control 155

1997a); however in this analysis, as in Pralits et al. (2000a), the approach is somewhat
different.

Here, we use a perturbation technique together with integration by parts in space.
The APSE are derived directly from the PSE so the auxiliary condition also has to
be taken into account. Further, there is no ansatz made on the co-state variables
of the PSE such as (2.5). In this way a method has been introduced to derive the
APSE which provides the corresponding adjoint auxiliary condition. The details of
the derivation are given below. First, the objective function and the state equations
are differentiated with respect to the control Vw. Differentiating (2.9) and (2.6)–(2.7)
yields

δJ = Re

{∫ Z1

Z0

∫ X1

X0

∫ ∞
0

δuHu dy dx dz + l2
∫ Z1

Z0

∫ X1

X0

δVwVw dx dz

}
, (B 3)

Aδq̂ + B
∂δq̂

∂y
+ C

∂2δq̂

∂y2
+ D

∂δq̂

∂x
+

(
∂A

∂Q
δQ+

∂A

∂α
δα+

∂B

∂Q
δQ+

∂D

∂Q
δQ

)
q̂ = 0, (B 4)

∫ ∞
0

(
δûH

∂û

∂x
+ ûH

∂δû

∂x

)
dy = 0. (B 5)

The variations δq, δQ are the variations of q, Q caused by the variation of Vw. Note
also that the variation of q results in a variation of both the amplitude function q̂
and the streamwise wavenumber α:

δq = δq̂Θ + q̂Θ

∫ x′

X0

δα dx′, (B 6)

where

Θ = exp i

(∫ x′

X0

α dx′ + βz − ωt
)
.

Proceed by differentiating (2.1)–(2.3). This is given in a compact form as

∂LBLE

∂Q
δQQ+ LBLEδQ = 0. (B 7)

Now, introduce the complex functions q∗ = (p∗, u∗, v∗, w∗)T and r∗, the so-called co-
state variables, which are multiplied by (B 4)–(B 5) respectively according to (B 2).
Then (B 7) are multiplied by the co-state variables Q∗ = (V ∗, U∗,W ∗)T in the same
manner. The corresponding left-hand side of (B 1) can now be written∫ Z1

Z0

∫ X1

X0

∫ ∞
0

q∗H
(
Aδq̂ + B

∂δq̂

∂y
+ C

∂2δq̂

∂y2
+ D

∂δq̂

∂x
+
∂A

∂Q
δQq̂ +

∂A

∂α
δαq̂

+
∂B

∂Q
δQq̂ +

∂D

∂Q
δQq̂

)
dy dx dz + c.c.

+

∫ Z1

Z0

∫ X1

X0

∫ ∞
0

(
r∗
(
δûH

∂û

∂x
+ ûH

∂δû

∂x

)
+ r∗

(
δûT

∂ ¯̂u

∂x
+ ûT

∂δ ¯̂u

∂x

))
dy dx dz

+

∫ Z1

Z0

∫ X1

X0

∫ ∞
0

Q∗T
(
∂LBLE

∂Q
δQQ+ LBLEδQ

)
dy dx dz. (B 8)
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The right-hand side of (B 1) is derived by removing the derivatives from the differ-
entiated state equations using integration by parts in Ω. Note here that the co-state
variable r∗ has been introduced due to the additional equation, (2.7), of the PSE.
Further, the complex conjugate has been added as the gradient by definition, (2.11),
is a real-valued function.

Here, the complex conjugate is written out explicitly for the auxiliary condition.
Note that δα terms in (B 8) now must be integrated in the x-direction in order to
obtain the same integral form as in (B 6).

After collecting terms of δû, δq̂, δQ and
∫ x′
X0
δα dx′, the right-hand side including

boundary terms is written∫ Z1

Z0

∫ X1

X0

∫ ∞
0

(
AHq∗ − BH ∂q

∗

∂y
+ CH

∂2q∗

∂y2
− DH ∂q

∗

∂x

)
δq̂ dy dx dz + c.c.

+

∫ Z1

Z0

∫ X1

X0

∫ ∞
0

(
(r∗ − r∗)∂ ¯̂u

∂x
+
∂r∗

∂x
¯̂u

)
δû dy dx dz + c.c.

+

∫ Z1

Z0

∫ X1

X0

∫ ∞
0

(L∗BLE(Q)Q∗ − fABLE)δQ dy dx dz

−
∫ Z1

Z0

∫ X1

X0

∫ ∞
0

∂

∂x

(
q∗H

∂A

∂α
q̂

)∫ x′

X0

δα dx′ dy dx dz

+

∫ Z1

Z0

∫ X1

X0

∫ ∞
0

Ue

∂U∗

∂x
δUe dy dx dz

+

∫ Z1

Z0

∫ ∞
0

([
q∗HDδq̂ + r∗ûHδû+ q∗H

∂A

∂α
q̂

∫ x′

X0

δα dx′ + ū∗ûδU + w̄∗ûδW

+V ∗δU +UU∗δU +U∗δP +W ∗UδW −U∗UeδUe

]X1

X0

)
dy dz

+

∫ Z1

Z0

∫ X1

X0

([
q∗HBδq̂ + q∗HC

∂δq̂

∂y
− ∂(q∗HC)

∂y
δq̂ + ū∗v̂δU

+v̄∗v̂δV + w̄∗v̂δW + V ∗δV + VU∗δU +W ∗VδW

+
1

Re
(U∗yδU +W ∗

y δW −W ∗δWy −U∗δUy)

]∞
0

)
dx dz. (B 9)

Here, fABLE are the terms due to δQ in the PSE. In order to identify the objective
function (B 3) in (B 9), we add and subtract the energy norm in (B 9). Using (B 6), this
additional term can be written∫ Z1

Z0

∫ X1

X0

∫ ∞
0

(
δuHu− δûH û|Θ|2 − i|û|2

∫ x′

X0

δα dx′|Θ|2
)

dy dx dz + c.c. (B 10)
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Now impose the following boundary conditions on the state and co-state variables:

δû = δv̂ = δŵ = 0 at y = 0,

δû, δv̂, δŵ, δp̂→ 0 as y →∞,
δû = δv̂ = δŵ = δp̂ = 0 at x = X0,

δ U = δ W = 0 at y = 0,

δ U, δ W → 0 as y →∞,
δU = δW = δUe = 0 at x = X0,

u∗ = v∗ = w∗ = 0 at y = 0,

u∗, v∗, w∗, p∗ → 0 as y →∞,
U∗ = W ∗ = 0 at y = 0,

U∗, V ∗,W ∗ → 0 as y →∞.
Let q∗ and r∗ satisfy the equations given by δu, δq̂ and

∫ x′
X0
δα dx′. Further, let Q∗

satisfy the equations given by δQ. This is written explicitly as

p̄∗iα− ∂p̄∗

∂x
+
∂ū∗

∂y
V − ∂ū∗

∂x
U + w̄∗

∂W

∂x
− 1

Re

∂2ū∗

∂y2

+ū∗
[
−iω + iαU +

∂U

∂x
+ iβW +

1

Re
(α2 + β2)

]
= −(r∗ − r∗)∂¯̂u

∂x
+
∂r∗

∂x
¯̂u+ ¯̂u|Θ|2, (B 11)

∂p̄∗

∂y
+ ū∗

∂U

∂y
− ∂v̄∗

∂y
V − ∂v̄∗

∂x
U + w̄∗

∂W

∂y
− 1

Re

∂2v̄∗

∂y2

+v̄∗
[
−iω + iαU +

∂V

∂y
+ iβW +

1

Re
(α2 + β2)

]
= −(r∗ − r∗) ∂¯̂v

∂x
+
∂r∗

∂x
¯̂v + ¯̂v|Θ|2, (B 12)

p̄∗iβ − ∂w̄∗

∂y
V − ∂w̄∗

∂x
U − 1

Re

∂2w̄∗

∂y2
+ w̄∗

[
−iω + iαU + iβW +

1

Re
(α2 + β2)

]
= −(r∗ − r∗)∂ ¯̂w

∂x
+
∂r∗

∂x
¯̂w + ¯̂w|Θ|2, (B 13)

−∂ū
∗

∂x
+ ū∗iα− ∂v̄∗

∂y
+ w̄∗iβ = 0, (B 14)

∂

∂x

∫ ∞
0

(
i(p̄∗û+ ū∗p̂) +

(
iU +

2α

Re

)
(ū∗û+ v̄∗v̂ + w̄∗ŵ)

)
dy + i|Θ|2

∫ ∞
0

|û|2 dy = 0,

(B 15)

∂V ∗

∂y
− ∂U

∂y
U∗ −W ∗ ∂W

∂y
= Re

{
ū∗
∂û

∂y
− ∂v̄∗

∂y
v̂ + w̄∗

∂ŵ

∂y

}
, (B 16)
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∂V ∗

∂x
+U

∂U∗

∂x
+
∂V

∂y
U∗ + V

∂U∗

∂y
−W ∗ ∂W

∂x
+

1

Re

∂2U∗

∂y2

= Re

{
iα[ū∗û+ v̄∗v̂ + w̄∗ŵ]− ∂ū∗

∂x
û− ∂ū∗

∂y
v̂ − ū∗ ∂v̂

∂y
+ v̄∗

∂v̂

∂x
+ w̄∗

∂ŵ

∂x

}
, (B 17)

∂W ∗

∂x
U +

∂W ∗

∂y
V +

1

Re

∂2W ∗

∂y2

= Re

{
iβ[ū∗û+ v̄∗v̂ + w̄∗ŵ]− ∂w̄∗

∂x
û− w̄∗ ∂û

∂x
− ∂w̄∗

∂y
v̂ − w̄∗ ∂v̂

∂y

}
. (B 18)

Equations (B 11)–(B 15) are the adjoint of the parabolized stability equation, APSE.
The inhomogenous right-hand side of (B 11)–(B 13), here denoted fAPSE , comes from
the auxiliary condition (2.7) and the objective function (2.9). Equation (B 15) solves
the additional unknown co-state variable r∗ iteratively at each streamwise position.
Equations (B 16)–(B 18) are the adjoint of the boundary layer equations, ABLE. The
inhomogeneous right-hand side, denoted fABLE , is calculated from the solution of
the PSE and the APSE. However, only the real part is used as the left-hand side
consists of real-valued equations. The remaining boundary terms in (B 9) come from
the boundary x = X1 and the δV term at y = 0. We impose the initial condition of
both the ABLE and APSE to be zero at x = X1. This does not cause trivial solutions
as both (B 11)–(B 15) and (B 16)–(B 18) have a non-zero right-hand side in Ω. The
remaining terms from (B 9) can now be written

Re

{
δJ −

∫ Z1

Z0

∫ X1

X0

((l2Vw + V ∗w)δVw) dx dz +

∫ Z1

Z0

∫ X1

X0

∫ ∞
0

Ue

∂U∗

∂x
δUe dy dx dz

}
= 0.

(B 19)

Index w here denotes the value at y = 0. Equation (B 19) can now be rewritten as

δJ =

∫ Z1

Z0

∫ X1

X0

((l2Vw + V ∗w)δVw) dx dz −
∫ Z1

Z0

∫ X1

X0

∫ ∞
0

Ue

∂U∗

∂x
δUe dy dx dz. (B 20)

If the first term on the right-hand side of (B 20) is written, using (2.11), as

δJ =

∫ Z1

Z0

∫ X1

X0

∇Vw
JδVw dx dz, (B 21)

then the gradient of the objective function with respect to the wall-normal velocity
component of the mean flow at the wall can be identified as

∇Vw
J = l2Vw + V ∗w on y = 0. (B 22)

The second term on the right-hand side of (B 20) is the variation of the objective
function due a variation of the free-stream velocity. If a similar gradient definition as
in (B 21) is used for Ue

δJ =

∫ Z1

Z0

∫ X1

X0

∫ ∞
0

∇Ue
JδUe dy dx dz, (B 23)

then the gradient of the objective function with respect to the free-stream velocity
can be written

∇Ue
J = −Ue

∫ ∞
0

∂U∗

∂x
dy. (B 24)
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The variation Ue would be the consequence of, for example, a change in the geometry
and consequently the free-stream pressure, and is therefore not considered in this
paper.

B.3. Derivation of the gradient including stabilization

The derivation of the gradient including the stabilization terms does not differ much
from the derivation in §B.2. The same definition of the adjoint, (B 1), and inner
product, (B 2), are used. The difference becomes clear if the stabilization terms are
added to (B 8). This can be written∫ Z1

Z0

∫ X1

X0

∫ ∞
0

q∗H
(
Aδq̂ + B

∂δq̂

∂y
+ C

∂2δq̂

∂y2
+ D

∂δq̂

∂x
+
∂A

∂Q
δQq̂ +

∂A

∂α
δαq̂

+
∂B

∂Q
δQq̂ +

∂D

∂Q
δQq̂

)
dy dx dz + c.c.

+s

∫ Z1

Z0

∫ X1

X0

∫ ∞
0

q∗H
(
A
∂δq̂

∂x
+ B

∂

∂x

(
∂δq̂

∂y

)
+ C

∂

∂x

(
∂2δq̂

∂y2

)
+
∂A

∂Q
δQ

∂δq̂

∂x

+
∂A

∂α
δα
∂δq̂

∂x
+
∂B

∂Q
δQ

∂δq̂

∂x

)
dy dx dz + c.c.

+

∫ Z1

Z0

∫ X1

X0

∫ ∞
0

(
r∗
(
δûH

∂û

∂x
+ ûH

∂δû

∂x

)
+ r∗

(
δûT

∂¯̂u

∂x
+ ûT

∂δ¯̂u

∂x

))
dy dx dz

+

∫ Z1

Z0

∫ X1

X0

∫ ∞
0

Q∗T
(
∂LBLE

∂Q
δQQ+ LBLEδQ

)
dy dx dz. (B 25)

The new terms only appear in the second integral expression in (B 25). However,
this expression includes δq̂, δα and δQ so (B 11)–(B 15) and (B 16)–(B 18) will all
have additional terms due to s. The full derivation of the gradient using (B 25) is
not necessary due to the resemblance between (B 8) and (B 25). Instead, it suffices to
evaluate the additional terms associated with the stabilization. This is done following
the steps in §B.2 and yields

s

(
∂p̄∗

∂x
iα− ∂2ū∗

∂x∂y
V +

∂w̄∗

∂x

∂W

∂x
− ∂ū∗

∂x

∂V

∂y
− 1

Re

∂3ū∗

∂x∂y2

+
∂ū∗

∂x

[
−iω + iαU +

∂U

∂x
+ iβW +

1

Re
(α2 + β2)

])
, (B 26)

s

(
− ∂

2p̄∗

∂x∂y
+
∂ū∗

∂x

∂U

∂y
− ∂2v̄∗

∂x∂y
V − ∂v̄∗

∂x

∂V

∂y
+
∂w̄∗

∂x

∂W

∂y
− 1

Re

∂3v̄∗

∂x∂y2

+
∂v̄∗

∂x

[
−iω + iαU +

∂V

∂y
+ iβW +

1

Re
(α2 + β2)

])
, (B 27)

s

(
∂p̄∗

∂x
iβ − ∂2w̄∗

∂x∂y
V − ∂w̄∗

∂x

∂V

∂y
− 1

Re

∂3w̄∗

∂x∂y2

+
∂w̄∗

∂x

[
−iω + iαU + iβW +

1

Re
(α2 + β2)

])
, (B 28)
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s

(
∂ū∗

∂x
iα− ∂2v̄∗

∂x∂y
+
∂w̄∗

∂x
iβ

)
, (B 29)

s

∫ ∞
0

(
∂

∂x

[
i

(
p̄∗
∂û

∂x
+ ū∗

∂p̂

∂x

)
+

(
iU +

2α

Re

)(
ū∗
∂û

∂x
+ v̄∗

∂v̂

∂x
+ w̄∗

∂ŵ

∂x

)])
dy,

(B 30)

s

(
Re

{
ū∗

∂2û

∂x∂y
− ∂v̄∗

∂y

∂v̂

∂x
+ w̄∗

∂2ŵ

∂x∂y

})
, (B 31)

s

(
Re

{
iα

[
ū∗
∂û

∂x
+ v̄∗

∂v̂

∂x
+ w̄∗

∂ŵ

∂x

]
− ∂

∂x

(
ū∗
∂û

∂x

)
− ∂

∂y

(
ū∗
∂v̂

∂x

)})
, (B 32)

s

(
Re

{
iβ

[
ū∗
∂û

∂x
+ v̄∗

∂v̂

∂x
+ w̄∗

∂ŵ

∂x

]
− ∂

∂x

(
w̄∗
∂û

∂x

)
− ∂

∂y

(
w̄∗
∂v̂

∂x

)})
. (B 33)

Equations (B 26)–(B 29) are the additional terms in (B 11)–(B 14) respectively. Equa-
tion (B 30) is the additional term in (B 15) and (B 31)–(B 33) are the additional terms
in (B 16)–(B 18) respectively. It should be noted here that the boundary conditions do
not change in any of the state or adjoint equations. Further, the gradient expression
does not have any additional terms due to the stabilization parameter s.

REFERENCES

Airiau, C. 2000 Non-parallel acoustic receptivity of a Blasius boundary layer using an adjoint
approach. Flow, Turbulence Combust. 65, 347–367.

Andersson, P., Berggren, M. & Henningson, D. 1999 Optimal disturbances and bypass transition
in boundary layers. Phys. Fluids 11, 134–150.

Andersson, P., Henningson, D. S. & Hanifi, A. 1998 On a stabilization procedure for the parabolic
stability equations. J. Engng Maths 33, 311–332.

Balakumar, P. & Hall, P. 1999 Optimum suction distribution for transition prediction. Theor.
Comput. Fluid Dyn. 13, 1–19.

Bertolotti, F., Herbert, T. & Spalart, S. 1992 Linear and nonlinear stability of the Blasius
boundary layer. J. Fluid Mech. 242, 441–474.

Bewley, T. & Liu, S. 1998 Optimal and robust control and estimation of linear paths to transition.
J. Fluid Mech. 365, 305–349.

Bewley, T. & Moin, P. 1997 Optimal and robust approaches for linear and nonlinear regulation
problems in fluid mechanics. AIAA Paper 97-1872.

Byrd, R., Lu, P., Nocedal, J. & Zhu, C. 1995 A limited memory algorithm for bound constrained
optimization. SIAM J. Sci. Comput. 16, 1190–1208.

Dobrinsky, A. & Collis, S. S. 2000 Adjoint parabolized stability equations for receptivity prediction.
AIAA Paper 2000-2651.

Haj-Hariri, H. 1994 Characteristics analysis of the parabolized stability equations. Stud. Appl.
Maths 92, 41–53.

Herbert, T. 1997 Parabolized stability equations. Annu. Rev. Fluid Mech. 29, 245–283.

Hill, D. C. 1997a Receptivity in non-parallel boundary layers. In ASME Fluids Engineering Division
Summer Meeting, FEDSM ’97.

Hill, D. C. 1997b Inverse design for laminar three-dimensional boundary layers. Bull. Am. Phys.
Soc. 42, 2120.
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